Statistics for Science Fair – Some Basics

Statistics is Your Friend!

- Begin with the end in mind. Consider statistics when you are:
 - Developing your hypothesis
 - Designing your experiment
 - Analyzing your data
 - Framing your conclusions
 - Presenting your work

Case Study

- Student wanted to study how the chemical composition of rocks was changed by meteorite impacts.
- For one part of the experiment, the student used two different techniques to compare the chemical composition of rocks before and after impact.

3 Principles of Design

Replication

Aim for at least 30 replicates in each group

Control

Randomization

- Let chance choose for you (simple random sample)
- Consider using a coin, a table of random numbers, a dice, etc.

Design: An Example

- 100 granite samples were collected and need to be divided into two groups.
- Why randomize?
- How to randomize?
 - Number from 000 to 099. First 50 random numbers go to control group.

```
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1
8
0
9
4
2
5
2
5
8
2
4
7
1
3
4
7
7
4
3
3

2
3
5
6
3
2
1
9
8
2
1
1
9
0
4
5
2
6
1
8

3
1
3
3
0
6
3
3
1
3
7
5
3
9
6
9
3
8
7
3
8

4
3
5
6
5
0
0
1
6
2
2
4
3
6
4
3
2
4
7
9
6

5
7
8
5
0
5
9
2
5
5
5
8
8
7
3
1
1
2
1
9
9

6
7
8
5
0
```

.

Showing Your Design

 Using a flow chart can help effectively convey information about your experimental design

Exploratory Data Analysis

- The first step is analyzing data is called exploratory data analysis (EDA)
- First, use graphs to explore the data
- Second, use numerical measures to describe the data
- Never skip EDA—it allows you to decide how to approach the inferential analysis

Histogram

Side-by-Side Boxplot

Moving Toward Inference

- Inferential analysis uses the language of probability
- How we approach inference is based on exploratory data analysis
- We say something is statistically significant if the probability that the observed result is due to chance is less than some specified probability

M

Hypothesis Testing

- Hypothesis testing is one of the huge ideas of inference
- We state a null hypothesis, H₀, and an alternative hypothesis, H_a

Granite Example:

- \blacksquare H_0 : $\mu_{control} = \mu_{experimental}$
- H_a : $\mu_{control} \neq \mu_{experimental}$

Types of Hypothesis Tests

- **t-tests** allow you to compare two means
- Z-tests allow you to compare two proportions
- Chi-squared tests allow you to determine the goodness of fit of data to a given distribution

The P-value

- The output of a hypothesis test is a P-value, which is the probability that the observed difference between the two groups is due to chance variation.
- Define a cutoff of significance. P≤0.05 is often used.
- If the p-value of the hypothesis test is less than the specified value, the difference is statistically significant

Back to Our Case Study

- EDA showed that Zn appeared to be different between the control and experimental studies. Is that difference significant at the 0.05 level?
- P = 0.001
- The result is statistically significant at the 0.05 level. The difference between the two groups is probably not due to chance variation.

Technology

- TI 83 Plus, 84 Plus, and 89 calculators
- Microsoft Excel
- Minitab
- R (free)
- S-PLUS
- MYSTAT (free)
- www.whfreeman.com/tps3e

Statistics is Your Friend!

- Begin with the end in mind. Consider statistics when you are:
 - Developing your hypothesis
 - Designing your experiment
 - Analyzing your data
 - Framing your conclusions
 - Presenting your work
- Weave statistics into your design, your analysis, your written work, and presentation