Types of Science Fair Projects: The Good and the Bad

Demonstrations, experiments, engineering projects, and computer science projects
What is a demonstration?

• Demonstration projects are not permitted.

• A *demonstration* shows how something works.

• An *experiment* involves an independent and dependent variable.
Demo → Experiment

• The difference between a demonstration and an experiment is the manipulation of variables.

• To change a demonstration to an experiment, modify the project to include an independent and a dependent variable.

• Examples: Volcano, Motor
Science Fair Projects

Experiments

Math projects

Engineering

Computer Science
The Process is the Key

• Science, engineering, and mathematics each have their own process for coming to new knowledge.

• No matter what kind of project you are doing, you must follow the process appropriate to your discipline.
<table>
<thead>
<tr>
<th>Computer Programming</th>
<th>Math Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Process</td>
<td>Scientific Method</td>
</tr>
<tr>
<td>Define a need</td>
<td>State your question</td>
</tr>
<tr>
<td>Do background research</td>
<td>Do background research</td>
</tr>
<tr>
<td>Establish design criteria</td>
<td>Formulate your hypothesis, identify variables</td>
</tr>
<tr>
<td>Prepare preliminary designs</td>
<td>Design experiment, establish procedure</td>
</tr>
<tr>
<td>Build & test prototype</td>
<td>Test your hypothesis by doing an experiment</td>
</tr>
<tr>
<td>Test & redesign as necessary</td>
<td>Analyze your results and draw conclusions</td>
</tr>
<tr>
<td>Present results</td>
<td>Present results</td>
</tr>
</tbody>
</table>

Scientific Method & Engineering Process Comparison used with permission from Science Buddies.
Computer Science Projects

- Computer science projects are a special type of engineering projects and therefore follow the engineering design process.

- Improve existing things and create new ones.
Iteration!

• The engineering design process is iterative—a process of repeating a sequence of steps multiple times, each time coming closer to your goal.
Step-by-Step

1. Define a need.
 - Engineers/computer scientists define a need express it as a goal.
 - Clearly define the problem you are going to solve or situation you are going to improve.

2. Do background research.

 - Identify keywords
 - Generate questions
 - Define a target user
 - Evaluate alternate designs
 - Research design criteria

Iterate!
More Steps

3. Establish designs criteria.
 - Design criteria are requirements you specify that will be used to make decisions about how you build/program the product.
 - Keep your target user/customer in mind.

4. Make preliminary designs.
 - A written-down first iteration of your approach to meeting your design goal.
 - Consider and explore alternatives to your approach.
A Few More Steps

5. Build and test.
 - Build and test a prototype/test your first iteration of your program.
 - Use a “test plan” and analyze your data.

6. Redesign and retest.
 - Modify, redesign, debug, etc. until you have achieved your design goal.
 - A technical approach to your analysis is essential. Learn from your failures.
The Finish

7. Present your work.
 - Outline the engineering design process that you used.
 - Highlight the final product, its merit, originality, and usefulness.

Mistakes to avoid

- No need, no project.
- Gadgeteering is not engineering.
- Testing without asking the user.
- No analysis of prototype and redesign test results.
Summary

• Turn a demonstration into an experiment by adding variables.

• Science experiments, engineering projects, computer science projects, and math projects are all valid science fair projects.

• One size doesn’t fit all: use the process that is specific to the type of project you are doing.